<u>INTERNSHIP PROPOSAL</u>

(One page maximum)

Laboratory name: IJCLab				
CNRS identification code: UMR 9012				
Internship director'surname: G. Hupin				
e-mail: guillaume.hupin@ijclab.in2p3.fr	Phone number:			
Web page:				
Internship location: IJCLab Orsay (Paris-Saclay university)				
Thesis possibility after internship: <u>YES</u> /N	10			
Funding: YES/ NO	If YES, which type of funding:			

Application of Eigenvalue Continuation method to the continuum.

The Eigenvector Continuation (EC) method has emerged as a pivotal technique in nuclear structure analysis, standing as a standard tool for evaluating convergence properties within many-body methods. This method involves parameterizing the Hamiltonian to control its perturbative nature. In conjunction with considerations such as mesh size and other factors, numerical methods yield a finite set of results based on the parametrized input. These results encompass energies and eigenvectors expanded as Taylor series or Padé approximations, with coefficients tailored within a parameter range where the technique attains near-exactness. A significant parallel exists between the EC workflow and methodologies in machine learning. Similar to the development of an AI algorithm, the EC approach necessitates using a training set to parameterize the algorithm before making predictions in uncharted regions beyond the training data. Despite encountering efficiency challenges in computing states across continua due to high-dimensionality, certain standard scattering techniques enable operations within a finite internal region.

These methodologies facilitate the application of EC to predict converged reaction observables. The primary aim of this project is to investigate the application of EC to a specific scattering solver, with a particular emphasis on integrating it with the No-Core Shell Model possessing continuum capabilities.

Please, indicate which speciality(ies) seem(s) to be more adapted to the subject:

Condensed Matter Physics: YES/NO	Soft Matter and Biological Physics:	YES /NO
Quantum Physics: YES/NO	Theoretical Physics:	YES/NO