INTERNSHIP PROPOSAL

(One page maximum)

Laboratory name: Jeunes Equipes de l'Institut de Physique du Collège de France					
CNRS identification code: UAR 35	73				
Internship director'surname: Alexei OURJOUMTSEV / Sébastien GARCIA					
e-mail: alexei.ourjoumtsev@college-	<u>de-france.fr</u> Phone number: +33 1 44 27 14 74				
Web page: : https://jeipcdf.cnrs.fr/quantum-photonics/					
Internship location:					
Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France					
Thesis possibility after internship:	YES				
Funding: YES If	YES, which type of funding: Applied (ANR, BPI)				

Quantum engineering of light with intracavity Rydberg superatoms

Optical photons are excellent carriers of quantum information, but their lack of mutual interactions is a major roadblock for quantum technologies. Our new setup enables such interactions by transiently injecting the photons into an intra-cavity cold atomic gas and converting them into strongly interacting Rydberg polaritons. The Rydberg-blockaded cloud then acts as an effective two-level superatom with an enhanced coupling to light. We can coherently manipulate its state, efficiently detect it, and observe state-dependent π phase flips on the light reflected from the cavity as required for many quantum engineering tasks [1]. Recently, we obtained the first fully deterministically-generated free-propagating states of light with negative Wigner functions [2]. This platform opens many perspectives for developing deterministic multi-photon gates, performing quantum measurements impossible with current techniques, generating non-classical free-propagating resource states, and studying strongly correlated quantum fluids of light.

We recently expanded the capabilities of this platform towards the multi-superatom regime. A possible experimental M2 internship will consist in studying the effective interactions between optical pulses reflected from the cavity with two superatoms, leading to a PhD project focused on deterministic multi-photon quantum logic and Wigner-negative light states generation.

Another internship topic will be to assist us in the design and construction of a new setup where single atoms will be trapped and controlled next to a superatom. The following experimental PhD thesis will aim at developing quantum interconnects between static and flying qubits, in a collaboration with the quantum tech company Pasqal.

Both projects require a background in quantum physics, cold atoms and quantum optics, an interest in experimental research and an ability to work in a team.

[1] J. Vaneecloo, S. Garcia & A. Ourjoumtsev, <u>Phys. Rev. X 12</u>, 021034 (2022)
[2] V. Magro, J. Vaneecloo, S. Garcia & A. Ourjoumtsev, <u>Nature Photonics 17, 688 (2023)</u>

Please, indicate which speciality(ies) seem(s) to be more adapted to the subject:

Condensed Matter Physics:	YES	Soft Matter and Biological Physics:	NO	
Quantum Physics: YES		Theoretical Physics:	NO	