Internship and thesis proposals
Nanofluidics and nanomechanics with a carbon nanotube

Domaines
Condensed matter
Soft matter
Physics of liquids
Low dimension physics
Hydrodynamics/Turbulence/Fluid mechanics
Nanophysics, nanophotonics, 2D materials and van der Waals heterostructures,, surface physicss, new electronic states of matter

Type of internship
Expérimental
Description
Being the primordial solvent of life, water is essential to living organisms and to human societies. Because it is abundant on earth, it is at the core of essential emerging technological developments, including green chemistry, blue energy harvesting and so on. The primordial role of water can be related to its structural properties that are unique in nature (hydrogen bond network and dipolar moment). Any modification of the water structure, either in the liquid or solid states, has a huge impact on its properties. In extreme confinement situation, water can still fit into narrow channels such as carbon nanotubes (which diameter is lower than 1 nm) but at the cost of a modification of its structure. This yields structures of solid, but also structures of liquid water, that are different from the bulk [1,2], a rich phase diagram [3,4] and anomalous transport properties [5], i.e. when the laws of continuum fluid dynamics (Navier Stokes) do not hold anymore [6]. It is currently a very active research field thanks to the rapid development of new methodologies focused on the investigation of single/isolated nano-object. Up today, most experimental studies are struggling with the problem of sensitivity. Indeed, investigating individual carbon nanotubes is a challenge, owing to their small dimensions. To tackle this issue, we propose to use nanomechanics as an ultimate tool to investigate the properties of water confined inside a suspended, individual, carbon nanotube.
Contact
Adrien Noury
Laboratory : L2C - UMR 5221
Team : L2C - Nanomechanics
Team Website
/ Thesis :    Funding :