Domaines
Quantum optics/Atomic physics/Laser
Quantum Machines
Quantum information theory and quantum technologies
Non-linear optics
Nanophysics, nanophotonics, 2D materials and van der Waals heterostructures,, surface physicss, new electronic states of matter
Type of internship
Expérimental et théorique Description
Scattering of light in heterogeneous media, for instance the skin or a glass of milk, is usually
considered an inevitable perturbation or even a nuisance. Through repeated scattering and
interferences, this phenomenon seemingly destroys both the spatial and the phase information
of any laser illumination.By « shaping » or « adapting » the incident light, it is in principle possible to control the propagation and overcome the scattering process. This concept has been exploited in the last decade to focus and image through and in complex media, and opens important prospects for imaging at depth in biological media.
In the group we are currently exploring two main topics, combining synergistically optical design and numerical studies for : (a) non-invasive coherent (SHG, Raman) and incoherent (multiphoton fluorescence) imaging, leveraging computational microscopyconcepts and (b) exploiting random mixing induced by the propagation of light through a complex medium for various computational tasks, allowing the intriguing concept of computing with disorder.
We have multiple funded ongoing projects along these two directions and welcome motivated
applicants for internship, with a solid background in physics, and an interest in machine learning, optics, imaging and computing.
Contact
Sylvain Gigan