Domaines
Statistical physics
Physics of liquids
Hydrodynamics/Turbulence/Fluid mechanics
Type de stage
Expérimental et théorique Description
When several particles float on the surface of a liquid, they tend to cluster together. This phenomenon results from capillary attraction, sometimes called "Cheerios effect". In this project, we aim to study what happens to a cluster of floating particles in the presence of capillary waves in the Faraday geometry (thin liquid layer subjected to vertical vibration). The vertical oscillation can trigger standing waves on the surface, known as Faraday waves, which will interact with the particles.
The first goal of the project is to experimentally explore the behavior of a large number of spheres under capillary interaction and for varying vibration amplitudes. Depending on the surface density of the spheres and the vibration amplitude, we expect collective behavior similar to that of gas (dilute medium with disordered movements), liquid (denser medium with highly correlated movements), or solid (very dense medium with crystalline order and defects).
The existence of these different phases is very common for interacting particles. The question is whether Faraday waves play a role similar to temperature. In a second phase, the floating spheres will be replaced with particles of more complex shapes, such as elongated particles that may exhibit local alignment properties, in order to study the influence of this local order on aggregation properties.
Contact
Frederic Moisy