Offres de stage et propositions de thèse
Quantum dot fluorescence and optomechanical coupling

Domaines
Nanophysics, nanophotonics, 2D materials and van der Waals heterostructures,, surface physicss, new electronic states of matter

Type de stage
Expérimental
Description
The emission of colloidal quantum dots is highly dependent on their environment. Placed between two layers of gold, and excited in UV light, their emission couples with surface plasmons and its dynamics is accelerated. The smaller the gap between the two gold layers, the more the emission is modified. We propose to actively modify the spacing between the two layers in order to modify quantum dot emission. We will use the transient grating method, which involves exciting the sample with two infrared laser beams (exc =1064nm; 30ps pulse duration) to produce interference bangs with a period . Through photoelasticity, the standing waves thus created cause the sample to vibrate, modulating its thickness. The aim of the internship will be to study how the acoustic wave thus created modifies the properties of the light emitted. The first step will be to produce the samples. After depositing an optically thick layer of gold on a glass subtrate, a solution of CdSe/CdS quantum dots will be deposited. This emitter layer is then covered by a thin layer of gold. Secondly, this layer will be optically characterized under a microscope, both to characterize its thickness in white light and the fluorescence of the quantum dots under UV illumination. Finally, we'll use the transient grating method to change the thickness of the sample. Both thickness and quantum dot fluorescence will be studied.

Contact
Agnes MAITRE
Laboratoire : INSP - UMR7588
Equipe : ACONIQ
Site Web de l'équipe
/ Thèse :    Rémunération :